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I Stack s : Var → Values.

I Heap h : Addresses →f Values.

I (s, h) |= true always.

I (s, h) |= x = y iff s(x) = s(y) (same for 6=).

I (s, h) |= A ∧ B as usual.

I (s, h) |= emp iff h = ∅.
I (s, h) |= x 7→y iff

I s(x) = u, s(y) = v
I h = {(u, v)}.
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I (s, h) |= ls(x , y) iff

I (s, h) |= x 6= y ∧ x 7→y , or,
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NP-complete PTIME
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