
Complexity of Abduction in SL

The Complexity of Abduction for
Separated Heap Abstractions

Nikos Gorogiannis Max Kanovich Peter O’Hearn

Queen Mary University of London

July 13th, 2011



Complexity of Abduction in SL

Motivation

I Calcagno, Distefano, O’Hearn, Yang propose (POPL’09)
Compositional shape analysis by means of bi-abduction.

I Further papers extend the analysis, apply it to other domains.

I The published algorithms for abduction are incomplete.

I Is there a complete algorithm? (is the problem decidable?).

I If yes, what is the complexity for a common abstract domain?



Complexity of Abduction in SL

Motivation

I Calcagno, Distefano, O’Hearn, Yang propose (POPL’09)
Compositional shape analysis by means of bi-abduction.

I Further papers extend the analysis, apply it to other domains.

I The published algorithms for abduction are incomplete.

I Is there a complete algorithm? (is the problem decidable?).

I If yes, what is the complexity for a common abstract domain?



Complexity of Abduction in SL

Motivation

I Calcagno, Distefano, O’Hearn, Yang propose (POPL’09)
Compositional shape analysis by means of bi-abduction.

I Further papers extend the analysis, apply it to other domains.

I The published algorithms for abduction are incomplete.

I Is there a complete algorithm? (is the problem decidable?).

I If yes, what is the complexity for a common abstract domain?



Complexity of Abduction in SL

Motivation

I Calcagno, Distefano, O’Hearn, Yang propose (POPL’09)
Compositional shape analysis by means of bi-abduction.

I Further papers extend the analysis, apply it to other domains.

I The published algorithms for abduction are incomplete.

I Is there a complete algorithm? (is the problem decidable?).

I If yes, what is the complexity for a common abstract domain?



Complexity of Abduction in SL

Motivation

I Calcagno, Distefano, O’Hearn, Yang propose (POPL’09)
Compositional shape analysis by means of bi-abduction.

I Further papers extend the analysis, apply it to other domains.

I The published algorithms for abduction are incomplete.

I Is there a complete algorithm? (is the problem decidable?).

I If yes, what is the complexity for a common abstract domain?



Complexity of Abduction in SL

Motivation

I Calcagno, Distefano, O’Hearn, Yang propose (POPL’09)
Compositional shape analysis by means of bi-abduction.

I Further papers extend the analysis, apply it to other domains.

I The published algorithms for abduction are incomplete.

I Is there a complete algorithm? (is the problem decidable?).

I If yes, what is the complexity for a common abstract domain?



Complexity of Abduction in SL

Outline

Separation Logic

Abduction

Results & Conclusions



Complexity of Abduction in SL

Separation Logic

A Heap of Problems

{ ls(x , 0) ∧ ls(y , 0) } append(x,y) { ls(x , 0) }

How do we prevent sharing in the precondition?

I Reachability?
∀z .reach(x , z)⇒ ¬reach(y , z)∧
∀w .reach(y ,w)⇒ ¬reach(x ,w)∧

ls(x , 0) ∧ ls(y , 0)


I Separation Logic?

{ ls(x , 0) ∗ ls(y , 0) } append(x,y) { ls(x , 0) }



Complexity of Abduction in SL

Separation Logic

A Heap of Problems

{ ls(x , 0) ∧ ls(y , 0) } append(x,y) { ls(x , 0) }

How do we prevent sharing in the precondition?

I Reachability?
∀z .reach(x , z)⇒ ¬reach(y , z)∧
∀w .reach(y ,w)⇒ ¬reach(x ,w)∧

ls(x , 0) ∧ ls(y , 0)


I Separation Logic?

{ ls(x , 0) ∗ ls(y , 0) } append(x,y) { ls(x , 0) }



Complexity of Abduction in SL

Separation Logic

A Heap of Problems

{ ls(x , 0) ∧ ls(y , 0) } append(x,y) { ls(x , 0) }

How do we prevent sharing in the precondition?

I Reachability?
∀z .reach(x , z)⇒ ¬reach(y , z)∧
∀w .reach(y ,w)⇒ ¬reach(x ,w)∧

ls(x , 0) ∧ ls(y , 0)


I Separation Logic?

{ ls(x , 0) ∗ ls(y , 0) } append(x,y) { ls(x , 0) }



Complexity of Abduction in SL

Separation Logic

A Heap of Problems

{ ls(x , 0) ∧ ls(y , 0) } append(x,y) { ls(x , 0) }

How do we prevent sharing in the precondition?

I Reachability?
∀z .reach(x , z)⇒ ¬reach(y , z)∧
∀w .reach(y ,w)⇒ ¬reach(x ,w)∧

ls(x , 0) ∧ ls(y , 0)



I Separation Logic?

{ ls(x , 0) ∗ ls(y , 0) } append(x,y) { ls(x , 0) }



Complexity of Abduction in SL

Separation Logic

A Heap of Problems

{ ls(x , 0) ∧ ls(y , 0) } append(x,y) { ls(x , 0) }

How do we prevent sharing in the precondition?

I Reachability?
∀z .reach(x , z)⇒ ¬reach(y , z)∧
∀w .reach(y ,w)⇒ ¬reach(x ,w)∧

ls(x , 0) ∧ ls(y , 0)


I Separation Logic?

{ ls(x , 0) ∗ ls(y , 0) } append(x,y) { ls(x , 0) }



Complexity of Abduction in SL

Separation Logic

Heaps and Stars

{ ls(x , 0) ∗ ls(y , 0) } append(x,y) { ls(x , 0) }

Suppose for a model, x = 1 and y = 4.

h



1

2

3

4

5

0

0

−→

h1


1

2

3 0

h2

 4

5 0

satisfies ls(x , 0)

satisfies ls(y , 0)



Complexity of Abduction in SL

Separation Logic

Heaps and Stars

{ ls(x , 0) ∗ ls(y , 0) } append(x,y) { ls(x , 0) }

Suppose for a model, x = 1 and y = 4.

h



1

2

3

4

5

0

0

−→

h1


1

2

3 0

h2

 4

5 0

satisfies ls(x , 0)

satisfies ls(y , 0)



Complexity of Abduction in SL

Separation Logic

Heaps and Stars

{ ls(x , 0) ∗ ls(y , 0) } append(x,y) { ls(x , 0) }

Suppose for a model, x = 1 and y = 4.

h



1

2

3

4

5

0

0

−→

h1


1

2

3 0

h2

 4

5 0

satisfies ls(x , 0)

satisfies ls(y , 0)



Complexity of Abduction in SL

Separation Logic

Heaps and Stars

{ ls(x , 0) ∗ ls(y , 0) } append(x,y) { ls(x , 0) }

Suppose for a model, x = 1 and y = 4.

h



1

2

3

4

5

0

0

−→

h1


1

2

3 0

h2

 4

5 0

satisfies ls(x , 0)

satisfies ls(y , 0)



Complexity of Abduction in SL

Separation Logic

Heaps and Stars

{ ls(x , 0) ∗ ls(y , 0) } append(x,y) { ls(x , 0) }

Suppose for a model, x = 1 and y = 4.

h



1

2

3

4

5

0

0

−→

h1


1

2

3 0

h2

 4

5 0

satisfies ls(x , 0)

satisfies ls(y , 0)



Complexity of Abduction in SL

Separation Logic

Heaps and Stars

{ ls(x , 0) ∗ ls(y , 0) } append(x,y) { ls(x , 0) }

Suppose for a model, x = 1 and y = 4.

h



1

2

3

4

5

0

0

−→

h1


1

2

3 0

h2

 4

5 0

satisfies ls(x , 0)

satisfies ls(y , 0)



Complexity of Abduction in SL

Separation Logic

Semantics

I Stack s : Var → Values.

I Heap h : Addresses →f Values.

I (s, h) |= true always.

I (s, h) |= x = y iff s(x) = s(y) (same for 6=).

I (s, h) |= A ∧ B as usual.

I (s, h) |= emp iff h = ∅.
I (s, h) |= x 7→y iff

I s(x) = u, s(y) = v
I h = {(u, v)}.



Complexity of Abduction in SL

Separation Logic

Semantics

I Stack s : Var → Values.

I Heap h : Addresses →f Values.

I (s, h) |= true always.

I (s, h) |= x = y iff s(x) = s(y) (same for 6=).

I (s, h) |= A ∧ B as usual.

I (s, h) |= emp iff h = ∅.
I (s, h) |= x 7→y iff

I s(x) = u, s(y) = v
I h = {(u, v)}.



Complexity of Abduction in SL

Separation Logic

Semantics

I Stack s : Var → Values.

I Heap h : Addresses →f Values.

I (s, h) |= true always.

I (s, h) |= x = y iff s(x) = s(y) (same for 6=).

I (s, h) |= A ∧ B as usual.

I (s, h) |= emp iff h = ∅.
I (s, h) |= x 7→y iff

I s(x) = u, s(y) = v
I h = {(u, v)}.



Complexity of Abduction in SL

Separation Logic

Semantics

I Stack s : Var → Values.

I Heap h : Addresses →f Values.

I (s, h) |= true always.

I (s, h) |= x = y iff s(x) = s(y) (same for 6=).

I (s, h) |= A ∧ B as usual.

I (s, h) |= emp iff h = ∅.
I (s, h) |= x 7→y iff

I s(x) = u, s(y) = v
I h = {(u, v)}.



Complexity of Abduction in SL

Separation Logic

Semantics

I Stack s : Var → Values.

I Heap h : Addresses →f Values.

I (s, h) |= true always.

I (s, h) |= x = y iff s(x) = s(y) (same for 6=).

I (s, h) |= A ∧ B as usual.

I (s, h) |= emp iff h = ∅.
I (s, h) |= x 7→y iff

I s(x) = u, s(y) = v
I h = {(u, v)}.



Complexity of Abduction in SL

Separation Logic

Semantics

I Stack s : Var → Values.

I Heap h : Addresses →f Values.

I (s, h) |= true always.

I (s, h) |= x = y iff s(x) = s(y) (same for 6=).

I (s, h) |= A ∧ B as usual.

I (s, h) |= emp iff h = ∅.
I (s, h) |= x 7→y iff

I s(x) = u, s(y) = v
I h = {(u, v)}.



Complexity of Abduction in SL

Separation Logic

Semantics

I Stack s : Var → Values.

I Heap h : Addresses →f Values.

I (s, h) |= true always.

I (s, h) |= x = y iff s(x) = s(y) (same for 6=).

I (s, h) |= A ∧ B as usual.

I (s, h) |= emp iff h = ∅.

I (s, h) |= x 7→y iff

I s(x) = u, s(y) = v
I h = {(u, v)}.



Complexity of Abduction in SL

Separation Logic

Semantics

I Stack s : Var → Values.

I Heap h : Addresses →f Values.

I (s, h) |= true always.

I (s, h) |= x = y iff s(x) = s(y) (same for 6=).

I (s, h) |= A ∧ B as usual.

I (s, h) |= emp iff h = ∅.
I (s, h) |= x 7→y iff

I s(x) = u, s(y) = v
I h = {(u, v)}.



Complexity of Abduction in SL

Separation Logic

Semantics

I Stack s : Var → Values.

I Heap h : Addresses →f Values.

I (s, h) |= true always.

I (s, h) |= x = y iff s(x) = s(y) (same for 6=).

I (s, h) |= A ∧ B as usual.

I (s, h) |= emp iff h = ∅.
I (s, h) |= x 7→y iff

I s(x) = u, s(y) = v

I h = {(u, v)}.



Complexity of Abduction in SL

Separation Logic

Semantics

I Stack s : Var → Values.

I Heap h : Addresses →f Values.

I (s, h) |= true always.

I (s, h) |= x = y iff s(x) = s(y) (same for 6=).

I (s, h) |= A ∧ B as usual.

I (s, h) |= emp iff h = ∅.
I (s, h) |= x 7→y iff

I s(x) = u, s(y) = v
I h = {(u, v)}.



Complexity of Abduction in SL

Separation Logic

More semantics

I (s, h) |= A ∗ B iff there are hA, hB such that

I (s, hA) |= A
I (s, hB) |= B
I hA and hB are domain-disjoint and h = hA ∪ hB .

I (s, h) |= ls(x , y) iff

I (s, h) |= x 6= y ∧ x 7→y , or,
I (s, h) |= x 6= y ∧ ∃z . (x 7→z ∗ ls(z , y)).

I.e., non-empty, acyclic list segments.



Complexity of Abduction in SL

Separation Logic

More semantics

I (s, h) |= A ∗ B iff there are hA, hB such that

I (s, hA) |= A
I (s, hB) |= B
I hA and hB are domain-disjoint and h = hA ∪ hB .

I (s, h) |= ls(x , y) iff

I (s, h) |= x 6= y ∧ x 7→y , or,
I (s, h) |= x 6= y ∧ ∃z . (x 7→z ∗ ls(z , y)).

I.e., non-empty, acyclic list segments.



Complexity of Abduction in SL

Separation Logic

More semantics

I (s, h) |= A ∗ B iff there are hA, hB such that
I (s, hA) |= A

I (s, hB) |= B
I hA and hB are domain-disjoint and h = hA ∪ hB .

I (s, h) |= ls(x , y) iff

I (s, h) |= x 6= y ∧ x 7→y , or,
I (s, h) |= x 6= y ∧ ∃z . (x 7→z ∗ ls(z , y)).

I.e., non-empty, acyclic list segments.



Complexity of Abduction in SL

Separation Logic

More semantics

I (s, h) |= A ∗ B iff there are hA, hB such that
I (s, hA) |= A
I (s, hB) |= B

I hA and hB are domain-disjoint and h = hA ∪ hB .

I (s, h) |= ls(x , y) iff

I (s, h) |= x 6= y ∧ x 7→y , or,
I (s, h) |= x 6= y ∧ ∃z . (x 7→z ∗ ls(z , y)).

I.e., non-empty, acyclic list segments.



Complexity of Abduction in SL

Separation Logic

More semantics

I (s, h) |= A ∗ B iff there are hA, hB such that
I (s, hA) |= A
I (s, hB) |= B
I hA and hB are domain-disjoint and h = hA ∪ hB .

I (s, h) |= ls(x , y) iff

I (s, h) |= x 6= y ∧ x 7→y , or,
I (s, h) |= x 6= y ∧ ∃z . (x 7→z ∗ ls(z , y)).

I.e., non-empty, acyclic list segments.



Complexity of Abduction in SL

Separation Logic

More semantics

I (s, h) |= A ∗ B iff there are hA, hB such that
I (s, hA) |= A
I (s, hB) |= B
I hA and hB are domain-disjoint and h = hA ∪ hB .

I (s, h) |= ls(x , y) iff

I (s, h) |= x 6= y ∧ x 7→y , or,
I (s, h) |= x 6= y ∧ ∃z . (x 7→z ∗ ls(z , y)).

I.e., non-empty, acyclic list segments.



Complexity of Abduction in SL

Separation Logic

More semantics

I (s, h) |= A ∗ B iff there are hA, hB such that
I (s, hA) |= A
I (s, hB) |= B
I hA and hB are domain-disjoint and h = hA ∪ hB .

I (s, h) |= ls(x , y) iff
I (s, h) |= x 6= y ∧ x 7→y , or,

I (s, h) |= x 6= y ∧ ∃z . (x 7→z ∗ ls(z , y)).

I.e., non-empty, acyclic list segments.



Complexity of Abduction in SL

Separation Logic

More semantics

I (s, h) |= A ∗ B iff there are hA, hB such that
I (s, hA) |= A
I (s, hB) |= B
I hA and hB are domain-disjoint and h = hA ∪ hB .

I (s, h) |= ls(x , y) iff
I (s, h) |= x 6= y ∧ x 7→y , or,
I (s, h) |= x 6= y ∧ ∃z . (x 7→z ∗ ls(z , y)).

I.e., non-empty, acyclic list segments.



Complexity of Abduction in SL

Separation Logic

More semantics

I (s, h) |= A ∗ B iff there are hA, hB such that
I (s, hA) |= A
I (s, hB) |= B
I hA and hB are domain-disjoint and h = hA ∪ hB .

I (s, h) |= ls(x , y) iff
I (s, h) |= x 6= y ∧ x 7→y , or,
I (s, h) |= x 6= y ∧ ∃z . (x 7→z ∗ ls(z , y)).

I.e., non-empty, acyclic list segments.



Complexity of Abduction in SL

Separation Logic

A Bit More on the Semantics

What does it mean for (s, h) |= A ∗ true to be true?

That there is a heap hA ⊆ h such that (s, hA) |= A.

We work with symbolic heaps, e.g.,

x 6= y ∧ w 6= z ∧ x 7→y ∗ ls(y , x)



Complexity of Abduction in SL

Separation Logic

A Bit More on the Semantics

What does it mean for (s, h) |= A ∗ true to be true?
That there is a heap hA ⊆ h such that (s, hA) |= A.

We work with symbolic heaps, e.g.,

x 6= y ∧ w 6= z ∧ x 7→y ∗ ls(y , x)



Complexity of Abduction in SL

Separation Logic

A Bit More on the Semantics

What does it mean for (s, h) |= A ∗ true to be true?
That there is a heap hA ⊆ h such that (s, hA) |= A.

We work with symbolic heaps, e.g.,

x 6= y ∧ w 6= z ∧ x 7→y ∗ ls(y , x)



Complexity of Abduction in SL

Separation Logic

A Bit More on the Semantics

What does it mean for (s, h) |= A ∗ true to be true?
That there is a heap hA ⊆ h such that (s, hA) |= A.

We work with symbolic heaps, e.g.,

x 6= y ∧ w 6= z ∧ x 7→y ∗ ls(y , x)



Complexity of Abduction in SL

Abduction

Extracting Preconditions from Code

{emp

∗ x 7→x ′

}
*x = 0;

I Suppose the current state is emp.

I The next command is *x = 0 .

I Its precondition is x 7→x ′ ∗ true.

I Is it true that emp � x 7→x ′ ∗ true?

I No, but emp ∗ x 7→x ′ � x 7→x ′ ∗ true.



Complexity of Abduction in SL

Abduction

Extracting Preconditions from Code

{emp

∗ x 7→x ′

}
*x = 0;

I Suppose the current state is emp.

I The next command is *x = 0 .

I Its precondition is x 7→x ′ ∗ true.

I Is it true that emp � x 7→x ′ ∗ true?

I No, but emp ∗ x 7→x ′ � x 7→x ′ ∗ true.



Complexity of Abduction in SL

Abduction

Extracting Preconditions from Code

{emp

∗ x 7→x ′

}
*x = 0;

I Suppose the current state is emp.

I The next command is *x = 0 .

I Its precondition is x 7→x ′ ∗ true.

I Is it true that emp � x 7→x ′ ∗ true?

I No, but emp ∗ x 7→x ′ � x 7→x ′ ∗ true.



Complexity of Abduction in SL

Abduction

Extracting Preconditions from Code

{emp

∗ x 7→x ′

}
*x = 0;

I Suppose the current state is emp.

I The next command is *x = 0 .

I Its precondition is x 7→x ′ ∗ true.

I Is it true that emp � x 7→x ′ ∗ true?

I No, but emp ∗ x 7→x ′ � x 7→x ′ ∗ true.



Complexity of Abduction in SL

Abduction

Extracting Preconditions from Code

{emp

∗ x 7→x ′

}
*x = 0;

I Suppose the current state is emp.

I The next command is *x = 0 .

I Its precondition is x 7→x ′ ∗ true.

I Is it true that emp � x 7→x ′ ∗ true?

I No, but emp ∗ x 7→x ′ � x 7→x ′ ∗ true.



Complexity of Abduction in SL

Abduction

Extracting Preconditions from Code

{emp

∗ x 7→x ′

}
*x = 0;

I Suppose the current state is emp.

I The next command is *x = 0 .

I Its precondition is x 7→x ′ ∗ true.

I Is it true that emp � x 7→x ′ ∗ true?

I No, but emp ∗ x 7→x ′ � x 7→x ′ ∗ true.



Complexity of Abduction in SL

Abduction

Extracting Preconditions from Code

{emp ∗ x 7→x ′}
*x = 0;

I Suppose the current state is emp.

I The next command is *x = 0 .

I Its precondition is x 7→x ′ ∗ true.

I Is it true that emp � x 7→x ′ ∗ true?

I No, but emp ∗ x 7→x ′ � x 7→x ′ ∗ true.



Complexity of Abduction in SL

Abduction

Abduction

What is abduction in AI?

I Given A,B such that A 2 B,

I find X such that A,X � B.

I But, ignore trivial solutions such as ⊥ or A→ B.

What is Abduction in Separation Logic?

I Given formulae A,B such that A 2 B.
I Find symbolic heap X such that

I A ∗ X � B,
I and A ∗ X is consistent.



Complexity of Abduction in SL

Abduction

Abduction

What is abduction in AI?

I Given A,B such that A 2 B,

I find X such that A,X � B.

I But, ignore trivial solutions such as ⊥ or A→ B.

What is Abduction in Separation Logic?

I Given formulae A,B such that A 2 B.
I Find symbolic heap X such that

I A ∗ X � B,
I and A ∗ X is consistent.



Complexity of Abduction in SL

Abduction

Abduction

What is abduction in AI?

I Given A,B such that A 2 B,

I find X such that A,X � B.

I But, ignore trivial solutions such as ⊥ or A→ B.

What is Abduction in Separation Logic?

I Given formulae A,B such that A 2 B.
I Find symbolic heap X such that

I A ∗ X � B,
I and A ∗ X is consistent.



Complexity of Abduction in SL

Abduction

Abduction

What is abduction in AI?

I Given A,B such that A 2 B,

I find X such that A,X � B.

I But, ignore trivial solutions such as ⊥ or A→ B.

What is Abduction in Separation Logic?

I Given formulae A,B such that A 2 B.
I Find symbolic heap X such that

I A ∗ X � B,
I and A ∗ X is consistent.



Complexity of Abduction in SL

Abduction

Abduction

What is abduction in AI?

I Given A,B such that A 2 B,

I find X such that A,X � B.

I But, ignore trivial solutions such as ⊥ or A→ B.

What is Abduction in Separation Logic?

I Given formulae A,B such that A 2 B.
I Find symbolic heap X such that

I A ∗ X � B,
I and A ∗ X is consistent.



Complexity of Abduction in SL

Abduction

Abduction

What is abduction in AI?

I Given A,B such that A 2 B,

I find X such that A,X � B.

I But, ignore trivial solutions such as ⊥ or A→ B.

What is Abduction in Separation Logic?

I Given formulae A,B such that A 2 B.

I Find symbolic heap X such that

I A ∗ X � B,
I and A ∗ X is consistent.



Complexity of Abduction in SL

Abduction

Abduction

What is abduction in AI?

I Given A,B such that A 2 B,

I find X such that A,X � B.

I But, ignore trivial solutions such as ⊥ or A→ B.

What is Abduction in Separation Logic?

I Given formulae A,B such that A 2 B.
I Find symbolic heap X such that

I A ∗ X � B,
I and A ∗ X is consistent.



Complexity of Abduction in SL

Abduction

Abduction

What is abduction in AI?

I Given A,B such that A 2 B,

I find X such that A,X � B.

I But, ignore trivial solutions such as ⊥ or A→ B.

What is Abduction in Separation Logic?

I Given formulae A,B such that A 2 B.
I Find symbolic heap X such that

I A ∗ X � B,

I and A ∗ X is consistent.



Complexity of Abduction in SL

Abduction

Abduction

What is abduction in AI?

I Given A,B such that A 2 B,

I find X such that A,X � B.

I But, ignore trivial solutions such as ⊥ or A→ B.

What is Abduction in Separation Logic?

I Given formulae A,B such that A 2 B.
I Find symbolic heap X such that

I A ∗ X � B,
I and A ∗ X is consistent.



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗

x 7→0

� x 7→0

y 7→0 ∗

x = y

� x 7→0

y 7→0 ∗

x 7→0

� x 7→0 ∗ true

x 7→y ∗

y = z ∧ z 6= x

� ls(x , z)

x 7→y ∗

(z 6= x ∧ ls(y , z))

� ls(x , z)

ls(x , z) ∗ ls(y , z) ∗

z = w

� ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗

x 7→0

� x 7→0

y 7→0 ∗

x = y

� x 7→0

y 7→0 ∗

x 7→0

� x 7→0 ∗ true

x 7→y ∗

y = z ∧ z 6= x

� ls(x , z)

x 7→y ∗

(z 6= x ∧ ls(y , z))

� ls(x , z)

ls(x , z) ∗ ls(y , z) ∗

z = w

� ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗ x 7→0 � x 7→0

y 7→0 ∗

x = y

� x 7→0

y 7→0 ∗

x 7→0

� x 7→0 ∗ true

x 7→y ∗

y = z ∧ z 6= x

� ls(x , z)

x 7→y ∗

(z 6= x ∧ ls(y , z))

� ls(x , z)

ls(x , z) ∗ ls(y , z) ∗

z = w

� ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗ x 7→0 � x 7→0

y 7→0 ∗

x = y

� x 7→0

y 7→0 ∗

x 7→0

� x 7→0 ∗ true

x 7→y ∗

y = z ∧ z 6= x

� ls(x , z)

x 7→y ∗

(z 6= x ∧ ls(y , z))

� ls(x , z)

ls(x , z) ∗ ls(y , z) ∗

z = w

� ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗ x 7→0 � x 7→0

y 7→0 ∗ x = y � x 7→0

y 7→0 ∗

x 7→0

� x 7→0 ∗ true

x 7→y ∗

y = z ∧ z 6= x

� ls(x , z)

x 7→y ∗

(z 6= x ∧ ls(y , z))

� ls(x , z)

ls(x , z) ∗ ls(y , z) ∗

z = w

� ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗ x 7→0 � x 7→0

y 7→0 ∗ x = y � x 7→0

y 7→0 ∗

x 7→0

� x 7→0 ∗ true

x 7→y ∗

y = z ∧ z 6= x

� ls(x , z)

x 7→y ∗

(z 6= x ∧ ls(y , z))

� ls(x , z)

ls(x , z) ∗ ls(y , z) ∗

z = w

� ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗ x 7→0 � x 7→0

y 7→0 ∗ x = y � x 7→0

y 7→0 ∗ x 7→0 � x 7→0 ∗ true

x 7→y ∗

y = z ∧ z 6= x

� ls(x , z)

x 7→y ∗

(z 6= x ∧ ls(y , z))

� ls(x , z)

ls(x , z) ∗ ls(y , z) ∗

z = w

� ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗ x 7→0 � x 7→0

y 7→0 ∗ x = y � x 7→0

y 7→0 ∗ x 7→0 � x 7→0 ∗ true

x 7→y ∗

y = z ∧ z 6= x

� ls(x , z)

x 7→y ∗

(z 6= x ∧ ls(y , z))

� ls(x , z)

ls(x , z) ∗ ls(y , z) ∗

z = w

� ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗ x 7→0 � x 7→0

y 7→0 ∗ x = y � x 7→0

y 7→0 ∗ x 7→0 � x 7→0 ∗ true

x 7→y ∗ y = z ∧ z 6= x � ls(x , z)

x 7→y ∗

(z 6= x ∧ ls(y , z))

� ls(x , z)

ls(x , z) ∗ ls(y , z) ∗

z = w

� ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗ x 7→0 � x 7→0

y 7→0 ∗ x = y � x 7→0

y 7→0 ∗ x 7→0 � x 7→0 ∗ true

x 7→y ∗ y = z ∧ z 6= x � ls(x , z)

x 7→y ∗

(z 6= x ∧ ls(y , z))

� ls(x , z)

ls(x , z) ∗ ls(y , z) ∗

z = w

� ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗ x 7→0 � x 7→0

y 7→0 ∗ x = y � x 7→0

y 7→0 ∗ x 7→0 � x 7→0 ∗ true

x 7→y ∗ y = z ∧ z 6= x � ls(x , z)

x 7→y ∗ (z 6= x ∧ ls(y , z)) � ls(x , z)

ls(x , z) ∗ ls(y , z) ∗

z = w

� ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗ x 7→0 � x 7→0

y 7→0 ∗ x = y � x 7→0

y 7→0 ∗ x 7→0 � x 7→0 ∗ true

x 7→y ∗ y = z ∧ z 6= x � ls(x , z)

x 7→y ∗ (z 6= x ∧ ls(y , z)) � ls(x , z)

ls(x , z) ∗ ls(y , z) ∗

z = w

� ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Abduction

Examples of Abduction

emp ∗ x 7→0 � x 7→0

y 7→0 ∗ x = y � x 7→0

y 7→0 ∗ x 7→0 � x 7→0 ∗ true

x 7→y ∗ y = z ∧ z 6= x � ls(x , z)

x 7→y ∗ (z 6= x ∧ ls(y , z)) � ls(x , z)

ls(x , z) ∗ ls(y , z) ∗ z = w � ls(x ,w) ∗ ls(y ,w)



Complexity of Abduction in SL

Results & Conclusions

Results

Abduction is decidable (interpolation-like result).

Domain “∗true” /∈ RHS “∗true” ∈ RHS

7→

NP-complete PTIME

7→, ls

NP-complete NP-complete



Complexity of Abduction in SL

Results & Conclusions

Results

Abduction is decidable (interpolation-like result).

Domain “∗true” /∈ RHS “∗true” ∈ RHS

7→

NP-complete PTIME

7→, ls

NP-complete NP-complete



Complexity of Abduction in SL

Results & Conclusions

Results

Abduction is decidable (interpolation-like result).

Domain “∗true” /∈ RHS “∗true” ∈ RHS

7→

NP-complete PTIME

7→, ls

NP-complete NP-complete



Complexity of Abduction in SL

Results & Conclusions

Results

Abduction is decidable (interpolation-like result).

Domain “∗true” /∈ RHS “∗true” ∈ RHS

7→ NP-complete

PTIME

7→, ls

NP-complete NP-complete



Complexity of Abduction in SL

Results & Conclusions

Results

Abduction is decidable (interpolation-like result).

Domain “∗true” /∈ RHS “∗true” ∈ RHS

7→ NP-complete PTIME

7→, ls

NP-complete NP-complete



Complexity of Abduction in SL

Results & Conclusions

Results

Abduction is decidable (interpolation-like result).

Domain “∗true” /∈ RHS “∗true” ∈ RHS

7→ NP-complete PTIME

7→, ls NP-complete

NP-complete



Complexity of Abduction in SL

Results & Conclusions

Results

Abduction is decidable (interpolation-like result).

Domain “∗true” /∈ RHS “∗true” ∈ RHS

7→ NP-complete PTIME

7→, ls NP-complete NP-complete



Complexity of Abduction in SL

Results & Conclusions

Conclusions

I The abduction problem is NP-complete.

I Lower bounds should carry over to other heap abstractions.

I Cases occuring in practice can be usually treated in polytime.

I There is a polytime algorithm for a fixed number of lists.



Complexity of Abduction in SL

Results & Conclusions

Conclusions

I The abduction problem is NP-complete.

I Lower bounds should carry over to other heap abstractions.

I Cases occuring in practice can be usually treated in polytime.

I There is a polytime algorithm for a fixed number of lists.



Complexity of Abduction in SL

Results & Conclusions

Conclusions

I The abduction problem is NP-complete.

I Lower bounds should carry over to other heap abstractions.

I Cases occuring in practice can be usually treated in polytime.

I There is a polytime algorithm for a fixed number of lists.



Complexity of Abduction in SL

Results & Conclusions

Conclusions

I The abduction problem is NP-complete.

I Lower bounds should carry over to other heap abstractions.

I Cases occuring in practice can be usually treated in polytime.

I There is a polytime algorithm for a fixed number of lists.


	Separation Logic
	Abduction
	Results & Conclusions

